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SUMMARY  

The importance of hierarchical structured data analysis, based on appropriate statistical 
models, is very well known in several research areas. In this paper we describe an 
application in Education Sciences: we have students grouped in classes belonging to 
schools, which in turn are scattered throughout the country. This grouped organization is 
labelled as a hierarchical or multilevel structure, and the models usually adopted for 
statistical analysis of this kind of data are hierarchical linear or multilevel models. The 
development of these models takes into account data variability within and among the 
hierarchical levels. We apply a hierarchical linear model (HLM) with two levels – 
students and schools – in order to identify relevant differences in student performance 
(10th grade high school in 2004/2005), considering three scientific subjects and 
comparing two different regions of Portugal: Coastal and Inland.  

Key words: hierarchical linear models, multi-level models, multi-level analysis. 

1. Introduction 

It is well known in the literature that there has been increasing interest in 
using Hierarchical Linear Models (HLM) to model student (and/or school) 
academic performance for the purpose of reforming education. 

The first researchers in these area employed classical single-level statistical 
methods, such as linear regression, to model these situations. Nevertheless, 
when data contain information at more than one level, or when the unit of 
analysis does not match the unit of randomization in the experiment, then the 
unit of analysis may become a problem. With classical approaches, one must 
restrict the data set to eliminate the hierarchy by conducting the analysis at 
individual or group level. This leads to de-aggregation of the school level data 
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to the individual level or aggregation of the individual level data to the group 
level, ignoring group identity or individual-level information (Bryk, 
Raudenbush, 1992). 

The limitations of the single-level equation in modelling features, especially 
for data nested within a group in the form of a hierarchy, led educational 
researchers to explore an alternative modelling technique, known as hierarchical 
linear modelling. Such a modelling approach has many advantages to 
researchers, since there is no need to analyze individual lower (student) level 
and upper (school) level models separately. 

Hierarchical or multilevel data can be analyzed without artificially 
restructuring the data by employing Multilevel (Goldstein, 1995) or 
Hierarchical Linear Models (Bryk, Raudenbush, 1992). These models can 
simultaneously examine effects of both individual and group level variables on 
an individual level outcome. Moreover, the correlated errors and nonzero ICC 
(intra-class correlation – a basic measure for the degree of dependency in 
clustered observations) inherent in grouped data are appropriately incorporated 
in HLM, giving accurate standard error estimates and inferences. 

In schools, the more students share common experiences due to closeness in 
space and/or time, the more similarities they appear to have.   

ICC plays an important role in this kind of analysis because it modifies the 
error variance in traditional linear regression models. This error variance 
represents the effect of all omitted variables and measurement errors, under the 
assumption that these errors are unrelated. In traditional linear models the 
omitted variables are assumed to have a random and not a structural effect – a 
debatable assumption in the case of data containing clustered observations 
(Kreft, de Leeuw, 1998). 

The multilevel approach is based on relaxing the assumptions depending on 
the method, algorithms, and software used. In fact, the HLMs are extensions of 
the linear regression model that relaxes one of the crucial assumptions of the 
independence of residuals (Snijders, Bosker, 1999). 

2. Two-level HLM 

We consider two-level hierarchical data structures and follow the notation 
of Bryk and Raudenbush (1992).  
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The HLM assumes hierarchical data, with one response variable measured 
at the lowest level and explanatory variables at all existing levels. Conceptually 
the model is often viewed as a hierarchical system of regression equations (Hox, 
1998). In our work we have data in J groups or contexts (schools), and a 
different number of individuals (students) nj in each group. The data do not 
necessarily have to be balanced (it is not necessary that kj nn =  for kj ≠ ). At 
the student level (lowest) we have the dependent variable Yij and the 
explanatory variable Xij, and at school level we have the explanatory variable 
Wj. The double subscript for these variables indicates that the observations are 
unique for each student i within each school j.  

2.1 Model specifications 

Thus, in the two-level hierarchical models, we can have separate level-1 
regression equations at each of the level-2 units. The level-1 or within-school 
model can be represented as: 

ijijjjij eXY +β+β= 10  (1) 

where Yij is the outcome for the ith student in the jth school; Xij is the 
explanatory variable for the ith student in the jth school; j0β  is the intercept for 
the jth school; j1β  is the slope for the jth school; and eij is the random error for 
the ith student in the jth school from its school’s predicted line. The subscripts 
for theβ  coefficients in this equation indicate that they can differ for each 
school j. 

Intercepts j0β  and slopes j1β  are modelled by explanatory variables in the 
level-2 or between-school models as: 

jjj

jjj
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uW

111101

001000

+γ+γ=β

+γ+γ=β
 

(2) 
 
(3) 

where 00γ  is the estimated intercept when Wj  is equal to zero; ju0  is the 
random error for the jth school from the average intercept; 10γ  is the estimated 
slope when Wj is equal to zero; and ju1  is the random error for the jth school 
from the average slope. The 01γ  and 11γ  are the regression coefficients 
associated with the effects of the explanatory school level on the student-level 
structural relationships. Substitution of (2) and (3) in (1) gives: 
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ijijjjijjjijij eXuuXWWXY +++γ+γ+γ+γ= 1011011000  (4) 

When more than one variable is used at the first or the second level, 
subscripts such as p (p = 1, 2, …, P) can be used for the first level and  q (q = 1, 
2, …,Q) can be used for the second level. Then (4) becomes the more general 
equation (Hox, 1998, 2002; Snijders, Bosker, 1999): 

           ijjpijpjpijqjpqqjqpijpij euXuXWWXY +++γ+γ+γ+γ= 00000  (5) 

The first part of (5), pijqjpqqjqpijp XWWX γ+γ+γ+γ 0000 , is called the 
fixed part of the model. The second part, ijjpijpj euXu ++ 0 , is called the 
random part. The term pijpj Xu  can be regarded as a random interaction 
between school and X’s.  

The specification of error terms at both the student (e) and school (u) levels 
allows HLMs to appropriately model the error in grouped data (i.e., nonzero 
ICC). 

The variables X and W can be modelled in their original, untransformed 
metric or can be centred (about respective grand means, or X about respective 
group means) (Sullivan et al., 1999). 

2.2 Assumptions 

The HLM’s assumptions are extensions of the linear modelling restrictions 
required for single level OLS regression (Bryk, Raudenbush, 1992; Snijders, 
Bosker, 1999). 

In our model (equation 1), ijY  is a continuous dependent variable, so we 
assume that the errors in the level-1 models are normal random variables with 
mean zero and common variance 2σ : 

20 σ== )evar()e(E ijij    (6) 

In the level-2 models (equations 2 and 3) we assume that the parameters 

j0β  and j1β  are distributed as i.i.d. multivariate normal with means 00γ  and 

10γ respectively, and variances 00τ  and 11τ respectively. The covariance of j0β  
and j1β  is denoted 01τ . Level-1 and level-2 errors are homogeneous and 
uncorrelated. 
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We summarize below the mathematical expressions of the assumptions, 
which can be found, for example, in Sullivan et al. (1999): 

2.3 Estimation and Hypothesis Testing in Two-level HLM  

Multilevel analysis produces estimates of the fixed effects (γ  parameters), 
the variances and co-variances of the e and u error terms, known as the variance 
components. 

The estimators generally used in multilevel analysis are Ordinary Least 
Squares (OLS) and Full or Restricted Maximum Likelihood (FML or RML) 
estimators (Hox, 2002; Ferrão, 2003). Computing the ML estimates requires an 
iterative procedure. Several algorithms are available to determine these 
estimates: EM (Expectation–Maximization); Fisher scoring, IGLS (Iterative 
Generalized Least Squares), and RIGLS (Residual or Restricted IGLS). 

Note that when the number of level-2 units is small (J < 30) or the data are 
extremely unbalanced we should be cautious in interpreting the results of 
significance tests (tests for covariance components and individual random 
effects in particular). More research needs to be done to determine the 
robustness of such tests in the presence of small samples and unbalanced data 
(Sullivan et al., 1999). 

If two models are nested, which means that a specific model can be derived 
from a more general model by removing parameters from the general model, we 
can compare them statistically using their deviances. Deviance is defined as –
2× log (likelihood). In general, models with a lower deviance fit better than 
models with a higher deviance.  

More detailed discussion of multilevel or HLM procedures can be found in 
Bryk, Raudenbush (1992), Longford (1993), Goldstein (1995), Kreft, de Leeuw 
(1998), Snijders, Bosker (1999) and Hox (2002). 
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3. Application 

The data are extracted from a list of questions concerning 10th-grade high-
school students in 2004/2005 relating to three scientific subjects and comparing 
two different regions of Portugal: the Coastal and Inland regions near Lisbon 
(Figures 1 and 2) and using data from the official site of GIASE – the Council 
for Inquiry and Evaluation of the Educative System, Ministry of Education. 

We apply the hierarchical linear model (HLM) with two levels, students 
(lower level) and schools (higher level), in order to identify relevant differences 
in student performance, considering that they are influenced by inherent 
characteristics of each student and by the environment in which they are placed. 

Throughout this work, we use the package MLwiN 2.02, developed and 
described by Rasbash et al. (2004). 

 
Figure 1. Map of Portugal  

 
Figure 2. Districts 

Grey: Coastal region; Black: Inland region 

3.1 Objectives 

In order to show that the HLMs are appropriate to identify relevant factors 
in student performance, we aim to identify whether there are relevant 
differences in average student performance between schools in the Coastal and 
Inland regions, which explanatory variables at different levels affect the output 
variable (average student performance) and how much variability we must have 
at each output level, and whether the students’ distribution by school is random.  



 
 
 
 

                  Hierarchical Linear Models in Education Sciences: an Application                 
 

 

 

 
 
 
 

77 

3.2 Selected variables 

Table 1 shows the selected variables that are used in the construction of the 
different intermediate models and the final model.  

It must be pointed out that the variable MDIDA_T is the aggregation of data 
of the variable D_IDADE (age) by class and that the variable MHAB_LIT 
(academic achievement) is the highest level of parents’ education. 

In terms of school location, we consider an urban school (URBANA), one 
that is situated in the main district of an urban area, in a city with more than 250 
inhabitants per km2. All other schools, in the urban area of the city not 
satisfying the aforementioned condition, are in the suburban category 
(SUB_URB). Other schools are considered as schools in rural areas (RURAL). 

3.3 Results and Analysis 

In analysis of HLMs a preliminary study with the explanatory variables is 
made, in order to verify both contribution and significance in future models. 

MHAB_LIT, which represents an inherent characteristic of parents, brings 
down the variability value between schools by about 24.6% ( 2

0uσ  change from 
0.043 to 0.057), while the variability value between students only represents 
5.7% ( 2

eσ  change from 0.844 to 0.895). This result, as well as the results for 
variables D_IDADE (with 24.6% and 6.6%, respectively), REP_ANT (with 
24.6% and 7.4%, respectively) and MDIDA_T (with 42.1% and 4.8%, respec-
tively), suggests that students are not distributed by school in a random way.  

The variation in the slopes across the schools’ summary lines ( 2
1uσ s.e.) and 

the covariance between the school intercepts and slopes ( 2
01uσ s.e.) for the 

explanatory variables D_IDADE – Intercept and MDIDA_T – Intercept are: 
0.029 (0.016)*** and -0.024 (0.016) for D_IDADE – Intercept; and, 0.491 
(0.210)** and -0.212 (0.098)*** for MDIDA_T – Intercept, respectively. 
Moreover, the variables A_EMP (with 26.3% and 12.3%); F_TPC (with 38.6% 
and 8.9%) and UNIVERS (with 36.8% and 14%) also contribute to explaining 
the differences between schools, as well as between students. This might partly 
explain the large differences in academic success between students of 
technological courses and those of scientific-humanistic courses. 
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Table 1. Description of selected variables 

VARIABLE DESCRIPTION 
Level 1 – Student 

ALUNO Student identification 
ZNOTAS_DC Average student performance – standardised using Z-scores 

D_IDADE 
Student age difference from expected age for attendance – 15 years 
(year 1989): 1990; 1989; 1988; 1987; <1987  

REGIÃO What region? Coastal or Inland 
CURSO Type of course: Science/Humanities  or  Technology 
SEXO Gender: male or female 
A_ASSID Attainment: yes or no 
A_PART Participation: yes or no 
A_EMP Commitment: yes or no 
A_DIST Attention: yes or no  
SAN_BAS Basic sanitation: yes or no  
TEL_FIXO Phone at home: yes or no  
COMPUT Personal computer (at home): yes or no  
INTERNET Internet facilities: yes or no  
N_ASSOAL Number of rooms: <3; 3; 4 or > 4 
F_TPC Homework effectiveness: always; often; occasionally or never 
UNIVERS Following university studies: yes or no  
REP_ANT Second attendance in the same grade: yes or no  
EST_ESCO Regular study at school: yes or no  

IMP_ESC 
Importance of learning and school for future career: great; some; little 
or none 

AJU_TPC Homework support: yes, occasionally or no 
F_BIBLIO Use of Resources Center/Library: yes or no  

MHAB_LIT 
Family scholarship. Scale 0 to 20 years: without basic studies: (0); 
basic studies: (4) /(6)/(9); secondary studies: (12); university studies: 
B.S. (17) M.S. or Ph.D.(20) 

PARENTAL Parental family: yes or no  
MDIDA_T Average D_IDADE within the class 

Level 2 – School 
ESCOLA School identification 
REGIÃO What region? Coastal or Inland 
URBANA* School in “urban” area 
SUB_URB** School in “suburban” area 
RURAL*** School in “rural” area 

LOCALIZ 
Type of school location: “urban”; “suburban” or “rural” – reference 
category 

*URBANA – School in an urban area of a city, in the main district of the city, with more than  
                       250 inhabitants per km2. 
**SUB_URB – School in an urban area of a city, in other districts of the city not considered  
                          as URBANA. 
***RURAL – School in a rural area: neither URBANA or SUB_URB. 
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Table 2. Individual Models: estimates of the selected variables 

Estimate Estimate Estimate Deviance 
VARIABLE 

1β  (s.e.) 2
eσ (s.e.) 2

0uσ (s.e.)  

D_IDADE - 0.321 (0.032)* * 0.836 (0.032)* * 0.043 (0.018)** * 3718.264***  
D_IDADE - Intercept - 0.345 (0.050)* * 0.820 (0.032)* * 0.057 (0.024)** * 3708.186***  
REGIÃO 0.080 (0.112)* *  0.895 (0.034)* * 0.055 (0.022)** * 3815.723***  
CURSO 0.725 (0.058)* * 0.804 (0.031)* * 0.057 (0.022)** * 3669.890***  
SEXO - 0.234 (0.051)* * 0.882 (0.034)* * 0.056 (0.022)** * 3795.663***  
URBANA 0.342 (0.093)* * 0.895 (0.034)* * 0.030 (0.014)** * 3805.857*** 
SUB_URB - 0.327 (0.118)*** 0.894 (0.034)* * 0.039 (0.017)** * 3809.561*** 
RURAL - 0.095 (0.116)* *  0.895 (0.034) **  0.055 (0.022) * *  3815.556***  
A_ASSID 0.720 (0.127)* * 0.869 (0.033)* * 0.051 (0.020)** * 3742.025***  
A_PART 0.879 (0.084)* * 0.829 (0.032)* * 0.049 (0.019)** * 3658.742***  
A_EMP 1.202 (0.087)* * 0.785 (0.030)* * 0.042 (0.017)** * 3593.008***  
A_DIST - 0.719 (0.086)* * 0.847 (0.033)* * 0.049 (0.020)** * 3674.619***  
SAN_BAS 0.786 (0.340)** 0.891 (0.034)* * 0.056 (0.022)** * 3810.878*** 
TEL_FIXO 0.254 (0.064)* * 0.885 (0.034)* * 0.053 (0.021)** * 3800.418***  
COMPUT 0.381 (0.098)* * 0.886 (0.034)* * 0.053 (0.021)** * 3801.216***  
INTERNET 0.311 (0.057)* * 0.878 (0.034)* * 0.049 (0.020)** * 3787.217***  
N_ASSOAL 0.174 (0.031)* * 0.875 (0.034)* * 0.054 0.021()*** 3771.654***  
F_TPC 1.028 (0.086)* * 0.815 (0.031)* * 0.035 (0.015)** * 3680.003***  
UNIVERS 0.760 (0.050)* * 0.770 (0.030)* * 0.036 (0.015)** * 3564.270***  
REP_ANT - 0.666 (0.062)* * 0.829 (0.032)* * 0.043 (0.018)** * 3706.471***  
EST_ESCO - 0.256 (0.115)*** 0.894 (0.034)* * 0.057 (0.022)** * 3793.520***  
IMP_ESC 0.452 (0.092)* * 0.880 (0.034)* * 0.053 (0.021)** * 3792.398***  
AJU_TPC - 0.201 (0.076)*** 0.890 (0.034)* * 0.057 (0.022)** * 3809.267*** 
F_BIBLIO 0.203 (0.056)* * 0.887 (0.034)* * 0.054 (0.021)** * 3803.138*** 
MHAB_LIT 0.054 (0.006)* * 0.844 (0.033)* * 0.043 (0.018)** * 3675.124***  
PARENTAL 0.157 (0.062)*** 0.891 (0.034)* * 0.056 (0.022)** * 3809.793*** 
MDIDA_T - 0.792 (0.088)* * 0.852 (0.033)* * 0.033 (0.015)** * 3740.012***  
MDIDA_T - Intercept - 0.844 (0.177)* * 0.819 (0.032)* * 0.103 (0.050)** * 3702.244***  

* Significant to α ≤ 0.001 ** Significant to α ≤ 0.01 *** Significant to α ≤ 0.05 

All values not marked with an asterisk are not significant to α ≤ 0.05. 

 
It is worth noting that the variables concerning the location of schools – 

URBANA and SUB_URB – also explain the considerable differences among 
schools. Students from URBANA area schools have a better achievement rate 
than those from SUB_URB. 

We choose to aggregate some explanatory variables in intermediate models 
to test their significance as a group. The results are presented in Table 3. 
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Table 3 (cont.). Results of Two-level Hierarchical Linear Model  

 Model IV Model V Final Model Final Model 
Random Slope 

Final Model 
Random Slope 

with Interactions 

Parameters Estimate 
(s.e) 

Estimate 
(s.e) 

Estimate 
(s.e) 

Estimate 
(s.e) 

Estimate 
(s.e) 

FIXED      
Intercept -0.502 (0.133)* -0.353 (0.139)** -1.369 (0.175)* -1.363 (0.175)* -1.777 (0.190)* 
D_IDADE -0.046 (0.039) -0.209 (0.032)* -0.055 (0.040)     
D_IDADE – Intercept       -0.049 (0.048) -0.037 (0.047) 
CURSO -0.096 (0.101) -0.020 (0.138) 0.140 (0.098) 0.136 (0.098) -0.164 (0.139) 
SEXO -0.193 (0.093)*** -0.165 (0.049)* -0.072 (0.046) -0.077 (0.046) -0.196 (0.091)*** 
URBANA -0.428 (0.116)* -0.346 (0.131)** -0.403 (0.125)* -0.391 (0.123) -0.366 (0.119)** 
SUB_URB -0.415 (0.118)* -0.239 (0.174) -0.383 (0.127)** -0.374 (0.125) -0.177 (0.158) 
CURSO× URBANA 0.641 (0.125)* 0.520 (0.134)* 0.523 (0.122)* 0.511 (0.123) 0.453 (0.124)* 

CURSO× SUB_URB 0.338 (0.130)** 0.292 (0.142)*** 0.224 (0.125)*** 0.222 (0.127) 0.172 (0.132) 

CURSO× SEXO  0.231 (0.107)***       0.153 (0.104) 
A_ASSID           
A_PART     0.417 (0.077)* 0.418 (0.077) 0.416 (0.077)* 
A_EMP     0.551 (0.091)* 0.537 (0.091) 0.522 (0.091)* 
A_DIST     -0.291 (0.079)* -0.295 (0.079) -0.289 (0.079)* 
SAN_BAS           
TEL_FIXO     0.134 (0.055)** 0.138 (0.055) 0.144 (0.055)** 
COMPUT           
INTERNET           
N_ASSOAL           
F_TPC 0.430 (0.122)*   0.291 (0.087)* 0.299 (0.087) 0.307 (0.086)* 
UNIVERS 0.168 (0.108)   0.303 (0.052)* 0.305 (0.052) 0.311 (0.052)* 
REP_ANT - 0.292 (0.076)*   -0.233 (0.075)* -0.241 0.075 -0.253 (0.075)* 
EST_ESCO  -0.171 (0.099)***         
IMP_ESC 0.214 (0.083)**         
AJU_TPC -0.269 (0.066)*   -0.318 (0.064)* -0.322 (0.064) -0.313 (0.064)* 
F_BIBLIO  0.088 (0.050)***   0.112 (0.048)** 0.116 (0.048) 0.110 (0.048)*** 
F_TPC× UNIVERS 0.460 (0.157)**         
MHAB_LIT   0.022 (0.012)*** 0.031 (0.005)* 0.031 (0.005) 0.014 (0.011) 
PARENTAL   0.136 (0.057)** 0.084 (0.053) 0.081 (0.053) 0.083 (0.053) 
CURSO× MHAB_LIT   0.028 (0.013)***     0.027 (0.012) 

MHAB_LIT × SUB_URB   -0.022 (0.012)***     -0.016 (0.011) 
MDIDA_T     0.181 (0.104) 0.179 (0.105) 0.178 (0.104) 
RANDOM           
Level 2: Schools – Intercept 0.006 (0.005) 0.016 (0.009)*** 0.016 (0.008)***  0.020 (0.010)*** 0.016 (0.009)*** 
Level 2 Schools – Slope       0.012 (0.009) 0.011 (0.009) 
Level 2: Schools – Interaction       -0.008 (0.008) -0.008 (0.007) 
Level 1: Students 0.653 (0.025)* 0.729 (0.028)* 0.587 (0.023)* 0.581 0.023* 0.578 (0.023)* 

-2 log(likelihood) 3300.064 3463.731 3072.828 3069.112 3058.551 
Number of valid data 1364 1366 1324 1324 1324 

* Significant to α ≤ 0.001     ** Significant to α ≤ 0.01     *** Significant to α ≤ 0.05   
All values not marked with an asterisk are not significant to α ≤ 0.05. 

 
The observed intra-class correlation (ICC) is: 
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This result is a rather low one, compared with other results of educational 
researchers – values between 0.05 and 0.20 are common (Snijders, Bosker, 
1999). This indicates that the grouping according to schools leads to a low 
similarity between the results of different students in the same school, although 
within-school differences are far larger than between-school differences. 
 

 
 

Figure 3. 24 level-2 residuals (output of MlwiN 2.02) 

In this caterpillar plot 
we have 24 level-2 
residuals plotted, one for 
each school in the data set. 
Looking at the confidence 
intervals around them, we 
can see a group of 5 
schools (3 at the lower end 
and 2 at the upper end of 
the plot) where the 
confidence intervals for 
their residuals do not 
overlap with zero. 

 
 

 
These residuals represent school random errors from the overall average 

predicted by the fixed parameter,00γ ; this means that these are a few schools 
that differ significantly from the average, at the 5% level.  

Estimated residuals, at any level, can be used to check model assumptions. 
One such assumption is that the residuals at each level follow Normal 
distributions. This assumption may be checked using a Normal probability plot, 
in which the ranked residuals are plotted against corresponding points on a 
Normal distribution curve. If the Normality assumption is valid, the points on a 
Normal plot should lie approximately on a straight line (Rasbash et al. 2004). 

The plots (figures 4 and 7) looks fairly linear, which suggests that the 
assumption of Normality is reasonable. This is not surprising in this case since 
our response is nearly Normal. 
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Figure 4. Plot of student and school residuals for unconditional model (output of 

MlwiN 2.02) 
 

 
It seems there are no 

evident differences bet-
ween Coastal and Inland 
schools, as we can see in 
the model of Figure 4. 
REGIAO’s coefficient is 
less than its standard 
error, and therefore not 
statistically significant. 
 

 
Figure 5. HLM for the REGIAO variable 

(output of MlwiN 2.02) 

The base model is formed by variables representing inherent characteristics 
such as D_IDADE (age of the student), CURSO (the course chosen by the 
student), SEXO (student’s gender), URBANA and SUB_URB (location of the 
school). This model explains 59.6% of the existing variability among schools 
and 15.3% of variability among students. 

Now, considering the model with random slopes, we can conclude that, 
although the coefficient is significant, an improvement of the model is not 
evident. Yet it can be stated that schools do not bring about a large difference 
between students of different ages, that is, they are considered to be “equitable” 
according to Bryk, Raudenbush (1992). 
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Model II deals with students’ attitudes. This is a very significant model, 
since it contributes with 56.1% and 28.6% to the explanation of the difference 
between schools and between students, respectively. 

Model III presents variables related to some of the possessions and services 
available at a student’s home. This, to a certain extent, is related to the socio-
economic standing of the family. The model is very significant, but only the 
variable TEL_FIXO appears in the final model. Its contribution is 66.7% and 
17.3% to the explanation of differences between schools and between students, 
respectively. 

Model IV is composed of variables that show the attitudes and expectations 
of the students towards the schools and their studies. It is quite significant and 
the variability between schools is practically explained by these variables – the 
coefficient is no longer significant. The variability between students is 
explained to a level of 27%. 

In Model V there are variables related to family characteristics: MHAB_LIT 
(the best academic achievement of the parents) and PARENTAL (type of 
family). There are also some interactions. The variability between schools is 
explained to a level of 71.9%, and that between students to 18.5%. 

The final model (only random intercepts) is presented in Figure 6. 
 

Figure 6. Final Hierarchical Linear Model (output of MlwiN 2.02) 

 
Figure 7 shows the student and school residuals. 
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Figure 7. Plot of student and school residuals for  final model (output of MlwiN 2.02) 

4. Conclusions 

Our research provided evidence or the following statements: 
1.  students with age-grade imbalance have a tendency to score poorly; 
2.  male students perform worse than female students; 
3.  students of sciences and humanities perform better than students of 

technological studies; 
4.  relative to students from schools in “rural” regions – the reference: 

- students from “urban” schools have better performance  
  than the “rural” ones; 
- students from “suburban” schools have poorer performance  
  than the “rural” ones. 
The final model decreases the variability between schools by about 71.9% 

and that between students about 34.4%. Comparing the final model with the 
unconditional model we can observe that the value of 
–2log(likelihood) has decreased from 3816.218 to 3072.828, a difference of 
743.39. The change in the deviance value has a chi-squared distribution, 19 
degrees of freedom, under the null hypothesis. We therefore conclude that the 
change is very highly significant, confirming the better fit of the more elaborate 
model to the data. 
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